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We have studied the conductance distribution function of two-dimensional disordered noninteracting sys-
tems in the crossover regime between the diffusive and the localized phases. The distribution is entirely
determined by the mean conductance, �g�, in agreement with the strong version of the single-parameter scaling
hypothesis. The distribution seems to change drastically at a critical value very close to one. For conductances
larger than this critical value, the distribution is roughly Gaussian while for smaller values it resembles a
log-normal distribution. The two distributions match at the critical point with an often appreciable change in
behavior. This matching implies a jump in the first derivative of the distribution which does not seem to
disappear as system size increases. We have also studied 1 / �g� corrections to the skewness to quantify the
deviation of the distribution from a Gaussian function in the diffusive regime.
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I. INTRODUCTION

The distribution function P�g� of the conductance of dis-
ordered systems is quite well understood in the metallic dif-
fusive regime. It has a Gaussian shape1 and so its first and
second moments are sufficient to describe it. The second
cumulant �irreducible moment� is a universal constant2 of
order e2 /h for a diffusive system of any dimensionality
which explains the term universal-conductance fluctuations.

On the other hand, the distribution function P�g� in the
localized phase is known to be log normal in one-
dimensional �1D� systems,3 where the metallic regime does
not exist and recently has been found to be a Tracey-Widom
distribution for the strongly localized phase in
two-dimensional �2D� systems.4

The crossover between the diffusive and localized re-
gimes is possible both in quasi-1D and in 2D systems. Ex-
tensive studies5,6 of quasi-1D systems have shown the distri-
bution function to be independent of the system details with
the average conductance being the only scaling parameter.
This agrees with the one-parameter scaling hypothesis for-
mulated for the mean conductance7 and later extended to the
entire conductance-distribution function.8 On the insulating
side of the quasi-1D crossover, P�g� has been found to be
essentially a “one-sided” log-normal distribution5 in agree-
ment with analytical studies of strictly 1D systems.3

The validity of the one-parameter scaling hypothesis for
the conductance-distribution function has also been studied
in the localized phase of 2D systems4,9,10 where P�g� is now
understood almost as well as in the diffusive phase. How-
ever, the crossover regime between the diffusive and the lo-
calized phases, where the localization length is of the order
of the system size, is poorly understood in 2D systems. The
numerical investigation of this regime is the focus of this
Brief Report.

The conductance distribution can be described by its cu-
mulants, which have been found in the diffusive regime to
have the form1

�gn�c � �g�2−n, n � g0, �g� � 1. �1�

Here g is the dimensionless conductance �measured in units
of e2 /h�, the brackets � . . . � stand for the ensemble averaging
over disorder, � . . . �c denotes a cumulant, and g0 is the mean
conductance at the scale of the elastic mean-free path �. It
has been shown1 that there are no perturbative corrections to
the second cumulant �variance�. Therefore, in the absence of
nonperturbative corrections it would remain universal �of or-
der 1� for any value of �g�. Since in the regime of strong
localization, �g��1, the variance should eventually decrease
and the nonperturbative corrections must exist.

In the absence of a sharp transition between localized and
delocalized states in 2D systems, it is possible that such non-
perturbative contribution to the variance can be numerically
traced already at the threshold between the diffusive and lo-
calized regimes where �g��1. As for the higher cumulants,
in the metallic and crossover regime one can assess numeri-
cally only the third cumulant of the distribution, which rep-
resents the leading deviation from the Gaussian. Equation �1�
shows that it is proportional to 1 / �g�. The constant of pro-
portionality has been calculated diagrammatically11 and the
result for quasi-2D systems is

�g3�c = − 0.0020�g�−1. �2�

On the other hand, one can study numerically how the
distribution function changes through the crossover regime
from the almost Gaussian for �g��1 to almost log normal
for �g��1. Analytical studies predict also the appearance of
the log-normal tails in the crossover regime1 which signify
the emergence of prelocalized states.12 However, their statis-
tical weight might be rather small in order to trace them
numerically.

Thus the aim of this paper is twofold. First, we want to
study systematically the full distribution function P�g� in the
crossover regime and check if the scaling hypothesis ex-
tended to the full distribution applies in this region. Second,
we want to obtain the corrections to the variance and the
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leading contribution to the third cumulant as a function of
1 / �g� as we move away from the deep metallic regime into
the crossover region.

In the next section, we describe the model and the nu-
merical procedure. In Sec. III, we obtain the conductance
distribution function for a wide variety of values of the dis-
order and the system size and present the results on the ap-
plicability of single-parameter scaling in the crossover re-
gion. In Sec. IV, we calculate the second and third cumulants
of the conductance distribution and analyze their 1 / �g� cor-
rections. In the last section we summarize our findings.

II. MODEL

We have studied numerically the zero temperature con-
ductance of the 2D Anderson model, described by the Hamil-
tonian

H = �
i

�iai
†ai + t�

i,j
aj

†ai + H.c., �3�

where the operator ai
†�ai� creates �destroys� an electron at

site i of an square lattice and �i is the energy of this site
chosen randomly between �−W /2,W /2� with uniform prob-
ability. The double sum runs over nearest neighbors. The
hopping-matrix element t is taken equal to −1, which set the
energy scale and the lattice constant equal to 1, setting the
length scale. We have considered square samples of size L
�L. All calculations are done at an energy equal to −1, to
avoid possible specific effects associated with the center of
the band.

The zero-temperature conductance g is proportional to the
transmission coefficient T between two semi-infinite leads
attached at the opposite sides of the sample

g =
2e2

h
T , �4�

where the factor of 2 comes from spin. From now on, we
will measure the conductance in units of 2e2 /h. We have
calculated the transmission coefficient from the Green’s
function, which was obtained propagating layer by layer with
the recursive Green’s function method.13 This drastically re-
duced the computational effort and we can easily solve
samples with lateral dimension up to 250 for the calculation
of the distribution function, which requires a huge number of
independent runs to get good statistics in the tails. The num-
ber of different realizations employed is of 106 for most val-
ues of the parameters. We have considered wide leads with
the same section as the samples, which are represented by
the same Hamiltonian as the system, Eq. �3� but without
diagonal disorder. The leads serve to obtain the conductivity
from the transmission formula in a way well-controlled theo-
retically and close to the experimental situation. In the study
of the distribution function, we use cyclic periodic boundary
conditions in the direction perpendicular to the leads. In the
calculation of the corrections to the variance and the skew-
ness �Sk�, we have also considered hard-wall boundary con-
ditions to make sure that they do not drastically change the
results. The main conclusions are similar and we will present

results for periodic boundary conditions, for which we have
better statistics.

III. CONDUCTANCE DISTRIBUTION

We have obtained the conductance-distribution function
for many values of the disorder and the system size, chosen
in such a way that the system is in the crossover region, i.e.,
its mean value of the conductance is close to one. In Fig. 1
we represent many of these distributions as a function of the
conductance for the values of the system size given in the
legend. The disorder varies between W=3 and 6. When the
mean conductance is larger than one the distribution is basi-
cally a Gaussian with an approximately constant standard
deviation, given by the value of the universal conductance
fluctuations. As we approach the crossover, the shape of the
high-conductance tail remains close to a Gaussian function
but there is a drastic change in behavior of the distribution at
the value g=1. An important conclusion that can be extracted
from Fig. 1 is that the entire conductance distribution is
uniquely determined by the mean conductance along the
crossover region. This support the strong version of the
single-parameter scaling hypothesis. In several cases, we
have adjusted the value of the disorder in such a way that the
mean conductance is the same for different system sizes. In
all these cases, the agreement between the different distribu-
tion functions is quite remarkable. For example, the distribu-
tion function for W=4.2 and L=60, whose mean conduc-
tance is equal 0.6677, is very similar to the distribution for
W=4.75 and L=240, whose mean is 0.6686.

For some distributions, we can appreciate a marked dis-
continuity in the first derivative of the distribution at g�1.
This drastic change in behavior has been reported in different
contexts but it has never been analyzed in depth for 2D sys-
tems. It appeared in the critical conductance distribution at
the metal-insulator transition in three-dimensional systems14

at the quantum-Hall transition,15 in the 2D symplectic
ensemble16 and in quasi-one-dimensional systems.5,6 In order
to check if this apparent discontinuity in the fist derivative of

FIG. 1. �Color online� Conductance-distribution function in the
crossover between the diffusive and the localized regime for the
values of L size indicated in the legend and for W ranging between
3 and 6.
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P�g� is a finite-size effect or not, we have run extensively
three different systems with the same mean conductance,
equal to 0.67	0.01, and with sizes equal to 60, 120, and 240
�the values of the disorder are 4.75, 4.43, and 4.2, respec-
tively�. In Fig. 2 we plot the conductance-distribution func-
tions of these three systems. We first note the excellent
agreement between the three of them, showing again that the
distribution is entirely determined by a single parameter.
Second, we appreciate that the possible discontinuity in the
first derivative of the distribution does not seem to vanish
away as the size increases.

IV. 1 Õg CONTRIBUTIONS TO THE SKEWNESS

The large amount of data gathered in our simulation al-
lows us to study with enough precision how the conductance
distribution deviates from a Gaussian in the diffusive regime
as a result of 1 /g corrections. We have quantified this devia-
tion through the Sk of the conductance. As we expect a lead-
ing contribution to Sk proportional to 1 / �g�, we have plotted
in Fig. 3 Sk�g� as a function of 1 / �g� for periodic boundary
conditions. The data corresponding to the ballistic regime
have not been drawn. The criteria to consider a data in the

ballistic regime was the ratio of system size to elastic mean-
free path, L / l, to be smaller than 20. We will discuss this
criterion later on when analyzing the behavior of the vari-
ance. The elastic mean-free path can be obtained through the
dependence of the mean conductance with the system
shape.17 For our model, we define l through the equation

�g� =
Lxl

Ly
−

1

3
, �5�

where Lx and Ly are the transversal and longitudinal dimen-
sions, respectively. We have fitted the data in Fig. 3 by an
expression of the form

Sk�g� = a +
b

�g�
+

c

L
, �6�

where the last term corresponds to a finite-size contribution.
The straight line in Fig. 3 is the extrapolation to infinite
size of Eq. �6� and intersects the vertical axis at
−0.0005	0.0004. This value is in reasonable agreement
with the prediction of van Rossum et al.11 of −0.002, if we
take into account that this estimate does not considered an
specific set of boundary conditions and so we are not com-
paring exactly the same quantities. We note that in the region
studied, the contribution to the skewness proportional to
1 / �g�2 is large and soon dominates over the negative linear
contribution.

We have also calculated the variance of the conductance,

2= �g2�c. In Fig. 4 we plot the variance of the data that we
consider to be in the diffusive regime as a function of the
inverse of the mean conductivity 1 / �g�. The horizontal line
corresponds to the value of universal conductance fluctua-
tions for periodic boundary conditions, which is equal to18


0
2=0.1544. We note that the range of the vertical axis is

small. There is a region in the ballistic regime where the
variance presents a peak �not shown� whose magnitude de-
pends on system size and is larger than the value of the
universal conductance fluctuations.18 In Figs. 3 and 4 we
have only included data with L / l�20, our criteria to be in
the diffusive regime. We have calculated the eigenvalues of
the transmission matrix and for L / l�20 there are many with

FIG. 2. �Color online� Conductance-distribution function for
three different pairs of values of the disorder and the system size
chosen so that the mean conductance is the same for all of them,
equal to 0.67	0.01.

FIG. 3. �Color online� Skewness multiplied by �g� as a function
of 1 / �g� for periodic boundary conditions. Each symbol corre-
sponds to a different system size.

FIG. 4. �Color online� Variance as a function of 1 / �g� for peri-
odic boundary conditions. Each symbol corresponds to a different
system size. The horizontal line represents the value of the universal
conductance fluctuations.
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transmission close to one, i.e., there are many ballistic chan-
nels contributing to the current. As g increases the variance
gets closer to the universal value.

We note in Fig. 4 that there is a systematic size depen-
dence of the variance, breaking the strong version of single-
parameter scaling in this regime. This is probably due to the
ballistic regime whose influence is much larger than ex-
pected. The existence of these finite-size effects together
with the strong criteria needed to be in the diffusive regime,
makes difficult a precise numerical determination of the uni-
versal conductance fluctuations.

V. DISCUSSION

We have found numerically the behavior of the variance
and the skewness in the crossover regime is compatible with
analytical predictions.1 However, our results do not consti-

tute a clear check since more precise numerical study of
1 / �g� corrections to the variance requires, on one hand, a
very large number of realizations and on the other hand
rather large sizes in order to avoid the ballistic regime.

We have also observed the change in shape of the distri-
bution function when from diffusive through crossover re-
gime. It can hardly be attributed, though, to the existence of
prelocalized states1,12 which cannot be numerically checked
for available system sizes at present time. This implies that
the pre-exponential factor for these states should be
relatively small.
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